4.3-4.4 linear ODEs

Ist-order ODEs $\quad \frac{d x}{d t}+a_{1}(t) x={ }_{5}(t) \quad x\left(t_{0}\right)=x_{0}$
Recall: Integrating factor $\quad I(t)=\exp \left(\int_{t_{0}}^{t} a_{1}(\tau) d \tau\right)$

$$
\begin{aligned}
& \underbrace{I(t) \frac{d x(t)}{d t}+a_{1}(t) I(t) x(t)}_{\text {exact dervactive }}=I(t)_{g}(t) \quad \dot{I}(t)=I(t) a_{1}(t) \\
& \frac{d(x(t) I(t))}{d t}=I(t) \dot{x}(t)+_{x}(t) \dot{I}(t) \\
& =I(t) \dot{x}(t)+x(t) I(t)_{a_{1}}(t) \\
& \Rightarrow \frac{d(x(t) I(t))}{d t}=I(t)_{g}(t) \text {. } \\
& \Rightarrow\left[x(t) I(t)-x\left(t_{0}\right) I\left(t_{0}\right)\right]=\int_{t_{0}}^{t} I(\tau) g(\tau) d \tau \\
& I\left(t_{0}\right)=\exp _{\exp }\left(\int_{t_{0},}^{t_{0}},(\tau) d \tau\right) \\
& =\exp (0)=1 \\
& \Rightarrow x(t) I(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} I(\tau)_{g}(\tau) d \tau \\
& \Rightarrow x(t)=\frac{1}{I(t)}\left[x_{0}+\int_{t_{0}}^{t} I(\tau)_{g}(\tau) d \tau\right] \\
& \Rightarrow x(t)=e^{-\int_{t_{0}}^{t} a_{1}(\tau) d \tau}\left[x_{0}+\int_{t_{0}}^{t} e^{\int_{t_{0} a_{1}(u) d u}^{t}} g(\tau) d \tau\right]
\end{aligned}
$$

If $a_{1}(t) \equiv a$, a constant, and $t_{0}=0$, then

$$
x(t)=e^{-a_{1} t}\left[x_{0}+\int_{0}^{t} e^{a_{1} \tau} g(\tau) d \tau\right]
$$

If $g \equiv 0$, then

$$
x(t)=x_{0} e^{-a_{1} t}
$$

(homogeneous solution)

Ex．$\quad \frac{d x}{d t}-\frac{x}{t}=t e^{3 t}, x(1)=2$
Let $I(t)=e^{-\int \frac{1}{t} d t}=e^{-\ln t}=\frac{1}{t}$

$$
\text { Solve IUP; } p_{3}^{\log \text { in } x(1)=2}
$$

$$
\begin{aligned}
& 2=C+\frac{e^{3}}{3} \\
& C=2-\frac{e^{3}}{3} \\
& \Rightarrow x(t)=\left(2-\frac{e^{3}}{3}\right) t+\frac{t e^{3 t}}{3} \\
& C \text { Solution to IUP. }
\end{aligned}
$$

Recall：A general solution to an nth－order linear nonhoungereous ODE is the sum of the homogeneous solution and the particular solution．

$$
x_{\text {gen }}=x_{h}+x_{p} \text {. }
$$

The general homog solution $x_{n}(t)=\sum_{i=1}^{n} c_{i} \phi_{i}(t)$ ，where $\phi_{i}^{n}(t)$ ar tat of solutions．
n linearly ind solutions to the homey equation．

Constant coefficients
Let $\quad{ }^{(n)} x+a_{1} x+\cdots+a_{n-1} \dot{x}+a_{n} x=0$
Characteristic poly．$\quad P(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda+a_{n}$
The roots of $P(\lambda)$（sometimes called eigenvalues of the OPE） give us a set of tin，ind．Solutions．
$t^{\beta} e^{\lambda t}$ ，where $\beta=\{0,1, \ldots, m(\lambda)-1\}$ and $m(\lambda)$ is the multiplicity of λ as a root of $P(\lambda)$ ．

$$
\begin{aligned}
& \frac{1}{t} \frac{d x}{d t}-\frac{x}{t^{2}}=e^{3 t} \\
& \Rightarrow \frac{d\left(x t^{-1}\right)}{d t}=e^{3 t} \\
& \frac{x}{t}=C+\frac{e^{3 t}}{3} \\
& x=C t+\underbrace{\text { solution }}_{\boldsymbol{c}_{\text {homo. }}} ⿺ ⿻ ⿻ 一 ㇂ ㇒ \underbrace{\text { solution }}_{\text {parfitular }} ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 e^{2 t} \\
& \text { general solution }
\end{aligned}
$$

Ex. $P(\lambda)=\lambda^{4}-1$, char. poly. of $\frac{d^{4} x}{d t^{4}}-x=0$

$$
\left(\lambda^{2}-1\right)\left(\lambda^{2}+1\right)=0
$$

$\lambda= \pm 1, \pm i$, so $e^{t}, e^{-t}, e^{i t}, e^{-i t}$ are solutions.

$$
x(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{i t}+c_{4} e^{-i t}
$$

Ex. $P(\lambda)=\lambda^{2}-2 \lambda+1$, cher. poly. of $\ddot{x}-2 \dot{x}+x=0$

$$
(\lambda-1)^{2}=0
$$

$\Rightarrow \lambda=1, m(\lambda)=2$, so e^{t} and $t e^{t}$ are solutions.

$$
x(t)=c_{1} e^{t}+c_{2} t e^{t}
$$

Recall: $\operatorname{span}\left\{e^{(a+b i) t}, e^{(a-b i) t}\right\}=\operatorname{span}\left\{e^{a t} \cos (b t), e^{a t} \sin (b t)\right\}$
Ex. For ${ }_{x}^{(4)}-x=0$

$$
x(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} \cos t+c_{4} \sin t
$$

The 4.3 If all the roots of the char. poly. $P(\lambda)$ have negative real parts, then given any solution $x(t)$ of the comressouding h.mog. ODE, $\exists M, b>0$ s.t.

$$
|x(t)| \leq M e^{-b t} \text { for } t>0
$$

and $\lim _{t \rightarrow \infty}|x(t)|=0$.
proof. Let $\lambda_{1}, \ldots, d_{r}$ be the r distinct eigenvalues, $m(\lambda)$ be the multiplicity,
Then $x(t)=\sum_{i=1}^{r} \sum_{j=0}^{m\left(\lambda_{i}\right)-1} c_{i j} t^{j} e^{\lambda_{i} t}$. Lat $b<\min _{i=1, \ldots, r}\left|\operatorname{Re} \lambda_{i}\right|$
Note $\left|t^{j} e^{\lambda_{i} t} e^{b t}\right|=\left|t^{j} e^{\left(\operatorname{Re} \lambda_{i}+b\right) t}\right|$

$$
\begin{aligned}
& \text { And } \lim _{t \rightarrow \infty}\left|t^{j} e^{\left(R e d_{i}+b\right) t}\right|=0 \quad\left(\text { because } \lim _{t \rightarrow \infty} t^{j} e^{-k t}=0 \quad \text { for all } k>0\right) \\
& \Rightarrow \exists M_{i}>0 \text { s.t. }\left|t^{j} e^{d_{i} t} e^{b t}\right|<M_{i} \\
& \Leftrightarrow \quad\left|t^{j} e^{d_{i} t}\right|<M_{i} e^{-b t}
\end{aligned}
$$

Let $M_{0}=\max \left\{c_{i j}\right\}$ and let $M=M_{0} \sum_{i=1}^{r} \sum_{j=1}^{\left(\lambda_{i} j\right)-1} M_{i}$ Then $|x(t)| \leq M e^{-b t}$

